The reason may be the lack of accuracy of the targeting. The imaging modality used to guide the needle pathway should ideally “see” the target at the time of biopsy, avoiding the established limitations of TRUS-MRI softwares (image fusion) . A direct visualisation is possible if real-time MRI guidance is used 2. It is also possible to use a conventional endorectal ultrasound probe equipped with a very high-quality B mode. This material allows to detect the majority of PI-RADS 4 or 5 lesions in the peripheral zone and the biopsy is then performed with real-time visual guidance 3It is now even possible to use an ultrasound transducer equipped with a 29MHz linear array (Exact Imaging, Canada), also known as micro-ultrasound 4,5. This material provides a spatial resolution never achieved until now for the prostate. The 14-29 MHz bandwidth allows for a depth of exploration of 50mm. All significant tumors detected on MRI (figure 1) are visible with this equipment. (Cornud et al, submitted for publication). A navigation fusion system is available if the tumor is not well delineated (figure 1).

One can thus wonder why systematic biopsies in addition to targeted biopsies are still recommended. The most plausible explanation is the risk of missing the target. This caution may be legitimate given the established targeting errors of fusion biopy systems. However, it becomes desirable in 2020 to consider an alternative to image fusion by using either in bore MRI- either micro-ultrasound guidance to improve the accuracy of a targeted biopsy and by adapting the site of the biopsies (target and margin around the target).  This strategy may allow to discard systematic biopsies.

It should be also noted that this meta-analysis is published at a time where the transrectal route is increasingly being questioned, given the septic risk it entails. Limiting transrectal biopsies to the most suspicious targets (PI-RADS 4 or 5), a common-sense strategy adopted in current practice by many practitioners, is probably a factor which may decrease the risk of post-biopsy infection 6. Conversely, PI-RADS 3 lesions, when defined by centers with a high volume of prostate MRI reading, have a positive biopsy rate of 12% 7, i.e. barely higher than that observed in PI-RADS 2 category. Targeted biopsies only are therefore not appropriate in this subgroup of patients and biopsy decision making is actually often not triggered by MRI findings, but by extra-MRI factors, such as a PSA density >0.15. Systematic biopsies may be then necessary, to pick up the 5-10% Gleason 7 tumors (mostly small volume 8 and small % of  Gleason grade 4 component lesions9),  which remain undetectable by MRI. The septic risk of the transrectal approach has been increasingly denounced these past years. More than one million prostate biopsies are performed in Europe and the United States every year. Fever or chills are observed in more than 10% of cases and a severe infection in 1-2% 10. One case of death has been reported in a Norwegian study 11, which warned that the resistance to antibiotics steadily increased and predicted that it will quadruple in the coming years. For some authors, the transrectal route is becoming untenable 11 and the routine use of rectal culture swabs prior to any transrectal biopsies is strongly encouraged to detect a quinolone-resistant germ 10.

The alternative is the transperineal route, initially used under general anesthesia to perform saturation biopsies (one core every 5 mm), before the high negative predictive value of mp-MRI was established. Local anesthesia is now possible for these biopsies 1 (figure 2), which can be done with conscious sedation, or even for some authors with local anesthesia only. Their major advantage is the absence of post biopsy infection, and the prophylaxis is done by IV injection of a cepaholosporin 30 mn before the biopsy, avoiding the risks of resistance to quinolones . The transperineal route is also more efficient for the diagnosis of anterior and apical cancers 12.

All these reasons explain why it can be expected that the transperineal approach will gain a more widespread acceptance in a short future, especially if systematic biopsies are maintained.


  1. Tu X, Liu Z, Chang T, et al: Transperineal Magnetic Resonance Imaging-Targeted Biopsy May Perform Better Than Transrectal Route in the Detection of Clinically Significant Prostate Cancer: Systematic Review and Meta-analysis. Clin Genitourin Cancer 17:e860-e870, 2019
  2. Barral M, Lefevre A, Camparo P, et al: In-Bore Transrectal MRI-Guided Biopsy With Robotic Assistance in the Diagnosis of Prostate Cancer: An Analysis of 57 Patients. AJR Am J Roentgenol 213:W171-W179, 2019
  3. van de Ven WJ, Venderink W, Sedelaar JP, et al: MR-targeted TRUS prostate biopsy using local reference augmentation: initial experience. Int Urol Nephrol 48:1037-45, 2016
  4. Lughezzani G, Saita A, Lazzeri M, et al: Comparison of the Diagnostic Accuracy of Micro-ultrasound and Magnetic Resonance Imaging/Ultrasound Fusion Targeted Biopsies for the Diagnosis of Clinically Significant Prostate Cancer. Eur Urol Oncol 2:329-332, 2019
  5. Ghai S, Eure G, Fradet V, et al: Assessing Cancer Risk on Novel 29 MHz Micro-Ultrasound Images of the Prostate: Creation of the Micro-Ultrasound Protocol for Prostate Risk Identification. J Urol 196:562-9, 2016
  6. Grummet J, Pepdjonovic L, Huang S, et al: Transperineal vs. transrectal biopsy in MRI targeting. Transl Androl Urol 6:368-375, 2017
  7. Kasivisvanathan V, Rannikko AS, Borghi M, et al: MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med, 2018
  8. De Visschere PJ, Naesens L, Libbrecht L, et al: What kind of prostate cancers do we miss on multiparametric magnetic resonance imaging? Eur Radiol 26:1098-107, 2016
  9. Delongchamps NB, Lefevre A, Bouazza N, et al: Detection of significant prostate cancer with magnetic resonance targeted biopsies–should transrectal ultrasound-magnetic resonance imaging fusion guided biopsies alone be a standard of care? J Urol 193:1198-204, 2015
  10. Thurtle D, Starling L, Leonard K, et al: Improving the safety and tolerability of local anaesthetic outpatient transperineal prostate biopsies: A pilot study of the CAMbridge PROstate Biopsy (CAMPROBE) method. J Clin Urol 11:192-199, 2018
  11. Johansen TEB, Zahl PH, Baco E, et al: Antibiotic resistance, hospitalizations, and mortality related to prostate biopsy: first report from the Norwegian Patient Registry. World J Urol, 2019
  12. Covin B, Roumiguie M, Quintyn-Ranty ML, et al: Refining the risk-stratification of transrectal biopsy-detected prostate cancer by elastic fusion registration transperineal biopsies. World J Urol 37:269-275, 2019

Union pour le Développement de la Radiologie Interventionnelle (UDRI).
Non-profit organization (law 1901). Teaching Courses on Prostate MRI cancer detection : Workshops & Seminars.

Follow Us